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Abstract

Polyaniline–V2O5 hybrid materials have been prepared by an oxidative intercalation reaction and the factors that affect their elec-
trochemical discharge–charge performance have been investigated. The first discharge capacity of a sample produced from a nominal
molar ratio of aniline: V2O5 = 3 (V2O5–(AN)3.0) is higher than that of a sample prepared from the lower ratio of aniline: V2O5 = 0.5
(V2O5–(AN)0.5). The V2O5–(AN)0.5 sample also shows better reversibility. Samples have been post-treated at different temperatures in
air or oxygen. Post-treatment improves the electrochemical performance of V2O5–(AN)0.5 but degrades both the capacity and reversibility
of V2O5–(AN)3.0. A V2O5–(AN)0.5 sample post-treated at 70◦C in air exhibits the best discharge–charge characteristics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Inorganic–organic hybridization is capable of produc-
ing novel materials that have both inorganic and organic
characteristics. Such hybrid materials can be produced by
intercalation of organic molecules into a layered inorganic
material. Recently, hybrid materials composed of conduct-
ing polymer and V2O5 xerogel have been prepared[1–8] by
oxidative intercalation reaction of non-conducting organic
monomer, and have been applied as electrode materials in
rechargeable lithium batteries. In the case of polyaniline
(PANI)-intercalated V2O5, the discharge capacity of an
as-prepared sample is not exceptional despite the fact both
PANI and V2O5 are active components for electrochemical
lithium intercalation. A significant improvement has been
achieve, however, by oxygen post-treatment at temperatures
below 100◦C for less than 5 h[6], which indicates that sev-
eral factors may have a significant influence on the capacity
of PANI–V2O5 hybrid materials.
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This study examines the factors that affect the electro-
chemical performance of PANI–V2O5 hybrid cathode ma-
terials using non-aqueous electrolyte cells. For this purpose,
a comparison is made of the effects of PANI concentration,
heat-treatment temperature, and post-treatment condition on
the electrochemical lithium insertion characteristics of PANI
intercalated–V2O5 compounds.

2. Experimental

2.1. Preparation of V2O5·yH2O xerogel

V2O5 xerogels were prepared by the method described
elsewhere[9]. The V2O5 powder (3 g) was dissolved in
300 ml of 10% H2O2 solution. An exothermic reaction takes
place during a partial decomposition of H2O2 and leads
to the release of oxygen gas. A clear orange solution is
formed after about 10 min and becomes a dark red gel after
few hours. The red gel was aged for three days and then
dried at 100◦C to produce a composition of V2O5·yH2O
(n ≈ 1.6–1.8), where the water content was deduced from
the observed interlayer distance (d ≈ 11.8 Å) from X-ray
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diffraction (XRD) analysis. The composition of the xerogel
was consistent with published data[10,11].

2.2. Synthesis of (PANI)x/V2O5 hybrid materials

Intercalation of PANI into V2O5 was performed by re-
acting V2O5 xerogel with aniline (AN) in a CH3OH:H2O/
(80:20% (w/w)) solution, as described elsewhere[8]. A 0.5 g
(2.34 mmol) sample of dried V2O5 xerogel was mixed with
30 ml of H2O. The resulting mixture was added to a 0.11 g
(1.17 mmol; AN:V2O5 = 0.5:1) or a 0.69 g (7.02 mmol;
AN:V2O5 = 3:1) sample of aniline solution dissolved in
240 ml of CH3OH. The reaction mixture was stirred at room
temperature for 36 h in air. The product was isolated by fil-
tration, washed with CH3OH and dried at ambient tempera-
ture under vacuum. The dried products were post-treated at
70 or 130◦C for 5 h under an air atmosphere or a constant
flow of oxygen in a tubular furnace.

2.3. Characterization

Powder X-ray diffraction analysis was performed using a
Rigaku X-ray diffractometer in the 2θ range from 3 to 60◦
with Cu K� radiation (λ = 1.5406 Å). Fourier transform
infrared (FT-IR) spectra were recorded with KBr pellets and
a MGNA-IR 560 spectrometer (Nicolet). Thermal analyses
were performed by means of a SDT 2960 Simultaneous
DTA-TGA (TA instruments) system at the heating rate of
10◦C/min in air.

Electrochemical studies were performed with a Macfile-II
galvanostat system under a constant current density of
0.5 mA cm−2 in the 4–1.5 V range. Swage lock-type cells
[12] were assembled in a dry room. A mixture of synthe-
sized organic/V2O5 material, Super P black (MMM Carbon
Co.) and polytetrafluoroethylene (70:20:10% (w/w/w)) was
used as the positive electrode (cathode), Li foil as the neg-
ative electrode (anode), and a 0.95 M solution of LiPF6 in
ethylene carbonate/dimethyl carbonate (50:50% (v/v)) as
the electrolyte.

3. Results and discussion

Thermogravimetric (TG) and differential scanning calori-
metric (DSC) curves for an as-prepared sample that was pro-
duced by reacting 0.5 mol AN with 1 mol V2O5 are shown
in Fig. 1. Four distinct stages are observed in these curves.
The first step, from ambient temperature to about 120◦C,
corresponds to the removal of weakly-bound water. The
second step up to 240◦C correlates with the loss of more
strongly-bound water, which is in good agreement with the
endothermic peak in the DSC curve. After removal of wa-
ter, there is an abrupt weight loss at around 250◦C, which
is attributed to decomposition and combustion of interca-
lated organic polymers. This combustion is confirmed by
the exothermic peak in the DSC curves. The gain in weight
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Fig. 1. TG–DSC curves for as-prepared V2O5–(AN)0.5.

starting from 440◦C is probably due to the uptake of oxy-
gen, which occurs together with the conversion of V4+ to
V5+ [13]. The resulting TG–DSC curves of PANI–V2O5 are
close to those for poly(thiophene)-derivatives intercalated in
V2O5 [14]. For the reaction product made with a molar ra-
tio of AN:V2O5 = 0.5:1, the composition is determined to
be (C6H5NH2)0.37V2O5·1.65H2O based on the consecutive
weight loss of water and polymer, i.e.(C6H5NH2)xV2O5 ·
yH2O → (C6H5NH2)xV2O5 → V2O5, wherex andy are
calculated from the following equations:[

18y

181.9 + 93.13x + 18y

]
= 0.12 (1)

[
93.13x

181.9 + 93.13x

]
= 0.16 (2)

Powder X-ray diffraction patterns for as-prepared and
post-treated PANI-intercalated V2O5 samples made with
AN:V2O5 = 0.5:1 (denoted hereafter as V2O5–(AN)0.5)
are presented inFig. 2. The intercalation of organic poly-
mers into the interlayers of the V2O5 xerogel is confirmed
by the shift in (0 0 1) reflections to lower angles. For the
as-prepared sample, an interlayer expansion from 12.03 to
13.55 Å is observed. This expansion is the consequence of
removing one layer of H2O (approximately 2.8 Å) and in-
serting one monolayer of PANI. The net interlayer expan-
sion can, thus, be calculated to be 4.32 Å, which suggests
that parallel polymer chains lie between the V2O5 slabs[15].
Post-treatment at 70◦C in air or oxygen does not alter the
interlayer spacing (13.55 Å for 70◦C—air and 13.46 Å for
70◦C—O2), but a slight contraction takes place with higher
temperature treatment (13.30 Å for 130◦C—air and 12.95 Å
for 130◦C—O2).

The XRD patterns for as-prepared and post-treated
PANI-intercalated V2O5 samples made with AN:V2O5 =
3:1 (denoted hereafter as V2O5–(AN)3.0). An interlayer
expansion from 12.03 to 15.33 Å is displayed by the
as-prepared sample. Taking into account the 2.8 Å of va-
cant space left by water removal, an interlayer expansion
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Fig. 2. Powder X-ray diffraction patterns for as-prepared and post-treated V2O5–(AN)0.5.
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Fig. 3. Powder X-ray diffraction patterns for as-prepared and post-treated V2O5–(AN)3.0.

of 6.1 Å is estimated. This expansion is slightly larger
than the thickness of the monolayer of PANI (5.3 Å)[15].
Post-treatment gives no significant change in the inter-
layer spacing of V2O5–(AN)3.0 samples, i.e. 70◦C—air
(15.30 Å), 70◦C—O2 (15.35 Å) and 130◦C—air and O2
(15.12 Å). The XRD analyses confirm that intercalated
PANI is stable with respect to the applied post-treatment
conditions, as expected from the TG–DSC analysis (Fig. 3).

The FT-IR spectra of as-prepared and post-treated
samples of V2O5–(AN)0.5 and V2O5–(AN)3.0 are
given in Figs. 4 and 5, respectively. The bands in the
1000–1800 cm−1 range correspond to the typical PANI
pattern[15], which confirms that an emeralidine form of
PANI is formed by the oxidative intercalation reaction.
These peaks are little affected by post-treatment, even at
130◦C. This is an indicative of almost no change in the
emeralidine form. The three strong bands below 1000 cm−1

are the characteristics of vanadium–oxygen stretching[16].
The vanadyl V=O vibration band at around 1015 cm−1

in the V2O5 xerogel, which is likely to be sensitive to
the out-of-plane chemical environment, shifts down to
1000 cm−1 upon intercalation of PANI into V2O5. This red
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Fig. 4. FT-IR spectra for as-prepared and post-treated V2O5–(AN)0.5.
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Fig. 5. FT-IR spectra for as-prepared and post-treated V2O5–(AN)3.0.
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Fig. 6. Discharge–charge curves for as-prepared and post-treated
V2O5–(AN)0.5. Data are collected under a constant current density of
0.5 mA cm−2 in 4–1.5 V range.

shift can be attributed to a bonding interaction between
polyaniline and the inorganic lattice, via N–H· · · O=V [2].
Post-treatment of V2O5–(AN)0.5 has little influence on
both the PANI peaks and the vanadyl vibration wavenum-
ber. This shows that the chemical interaction between
PANI and V2O5 is maintained (Fig. 4). For V2O5–(AN)3.0
samples, the intercalated PANI is little influenced by
post-treatment at least at 70◦C under both air and oxygen
conditions, as can be seen inFig. 5. Increase in tempera-
ture up to 130◦C deteriorates the PANI structure, which is
expected to exert an adverse effect on the electrochemical
performance.

The influence of post-treatment conditions on the first and
second discharge–charge characteristics of V2O5–(AN)0.5
samples is demonstrated inFig. 6. The discharge capac-
ity is improved after post-treatment at 70◦C, regardless of
the chosen gas atmosphere, and there is good reversibility.
With post-treatment at 130◦C, the first discharge capacities
are enhanced but are decreased on the second cycle. The
V2O5–(AN)0.5 sample post-treated at 70◦C in air for 5 h
exhibits the best performance.
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Fig. 7. Discharge–charge curves for as-prepared and post-treated
V2O5–(AN)3.0. Data are collected under a constant current density of
0.5 mA cm−2 in 4–1.5 V range.
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The first and second discharge–charge characteristics for
the V2O5–(AN)3.0 samples before and after post-treatment
are presented inFig. 7. The discharge capacity and re-
versibility are not as good as those for the V2O5–(AN)0.5
samples, although the first discharge capacity is substantially
improved for the as-prepared sample. After post-treatment,
even at a low temperature of 70◦C, the discharge capaci-
ties are poor. There is serious polarization behaviour after
heat-treatment at 130◦C which is due to the structural in-
stability mentioned above.

4. Conclusions

Factors that affect the discharge–charge performance of
PANI-intercalated V2O5 are investigated. The important
conclusions are as follows:

(i) In terms of the composition, the sample prepared by
reacting 0.5 mol aniline with 1 mol V2O5 is better than
that obtained by reaction of 3 mol aniline with 1 mol
V2O5.

(ii) For the temperature used in post-treatment, 70◦C is
better than 130◦C.

(iii) For the atmosphere used in post-treatment at 70◦C,
oxygen is not superior to air.
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