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Abstract

Polyaniline-\4Os hybrid materials have been prepared by an oxidative intercalation reaction and the factors that affect their elec-
trochemical discharge—charge performance have been investigated. The first discharge capacity of a sample produced from a nominal
molar ratio of aniline: MOs = 3 (V20s5—(AN)3.0) is higher than that of a sample prepared from the lower ratio of anilig®; V= 0.5
(V205—(AN)0.5). The L Os—(AN)0.5 sample also shows better reversibility. Samples have been post-treated at different temperatures in
air or oxygen. Post-treatment improves the electrochemical performane®©gf{AN)0.5 but degrades both the capacity and reversibility
of V205—(AN)3.0. A V>05—(AN)0.5 sample post-treated at 70 in air exhibits the best discharge—charge characteristics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction This study examines the factors that affect the electro-
chemical performance of PANI-Ds hybrid cathode ma-
Inorganic—organic hybridization is capable of produc- terials using non-aqueous electrolyte cells. For this purpose,
ing novel materials that have both inorganic and organic a comparison is made of the effects of PANI concentration,
characteristics. Such hybrid materials can be produced byheat-treatment temperature, and post-treatment condition on
intercalation of organic molecules into a layered inorganic the electrochemical lithium insertion characteristics of PANI
material. Recently, hybrid materials composed of conduct- intercalated—yOs compounds.
ing polymer and ¥Os xerogel have been prepargd-8] by
oxidative intercalation reaction of non-conducting organic
monomer, and have been applied as electrode materials i
rechargeable lithium batteries. In the case of polyaniline
(PANI)-intercalated ¥Os, the discharge capacity of an 54 Preparation of V,0s-yH»0 xerogel
as-prepared sample is not exceptional despite the fact both
PANI and V20s are active components for electrochemical  \/,05 xerogels were prepared by the method described
lithium intercalation. A significant improvement has been g|sewhere[9]. The \,0s powder (3g) was dissolved in
achieve, however, by oxygen post-treatment at temperature3ng mi of 10% HO, solution. An exothermic reaction takes
below 100°C for less than 51f6], which indicates that sev-  place during a partial decomposition oh®& and leads
eral factors may have a significant influence on the capacity 1y the release of oxygen gas. A clear orange solution is
of PANI-V20s hybrid materials. formed after about 10 min and becomes a dark red gel after
few hours. The red gel was aged for three days and then
dried at 100C to produce a composition of )XDs5-yH,O
* Corresponding author. Tek:82-41-540-5753; fax:-82-41-540-5758. (7 ~ 1.6-1.8), where the water content was deduced from
E-mail address: sgkang@office.hoseo.ac.kr (S.-G. Kang). the observed interlayer distancé & 11.8 A) from X-ray
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diffraction (XRD) analysis. The composition of the xerogel

was consistent with published dd0,11] 100

] 200
2.2. Synthesis of (PANI),/V20s hybrid materials %3 12% -

N

90 ]

Intercalation of PANI into MOs was performed by re-
acting V,Os xerogel with aniline (AN) in a CBOH:H,O/
(80:20% (w/w)) solution, as described elsewh8&jeA 0.5g
(2.34 mmol) sample of dried M5 xerogel was mixed with
30 ml of H,O. The resulting mixture was added to a 0.11g
(2.17 mmol; AN:\bOs = 0.5:1) or a 0.69g (7.02mmol; 204
AN:V,0s5 = 3:1) sample of aniline solution dissolved in 0
240 ml of CHsOH. The reaction mixture was stirred at room
temperature for 36 h in air. The product was isolated by fil-
tration, washed with CkDH and dried at ambient tempera-
ture under vacuum. The dried products were post-treated at
70 or 130°C for 5h under an air atmosphere or a constant
flow of oxygen in a tubular furnace.
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Fig. 1. TG-DSC curves for as-prepared®—(AN)O0.5.

starting from 440C is probably due to the uptake of oxy-
gen, which occurs together with the conversion df\fo
V5 [13]. The resulting TG-DSC curves of PANI-®s are
close to those for poly(thiophene)-derivatives intercalated in
Powder X-ray diffraction analysis was performed using a V20s [14]. For the reaction product made with a molar ra-
Rigaku X-ray diffractometer in thed2range from 3 to 60 tio of AN:V20s = 0.5:1, the composition is determined to

2.3. Characterization

with Cu Ka radiation § = 1.5406A). Fourier transform  be (GHsNH2)0.37V205-1.65H0 based on the consecutive

infrared (FT-IR) spectra were recorded with KBr pellets and weight loss of water and polymer, i.6CeHsNH2) V205 -
a MGNA-IR 560 spectrometer (Nicolet). Thermal analyses yH20 — (CgHsNH»),V205 — V05, wherex andy are
were performed by means of a SDT 2960 Simultaneous calculated from the following equations:

DTA-TGA (TA instruments) system at the heating rate of
10°C/min in air.
Electrochemical studies were performed with a Macfile-1I

galvanostat system under a constant current density of

0.5mAcnT? in the 4-1.5V range. Swage lock-type cells
[12] were assembled in a dry room. A mixture of synthe-
sized organic/YOs material, Super P black (MMM Carbon

Co.) and polytetrafluoroethylene (70:20:10% (w/w/w)) was

used as the positive electrode (cathode), Li foil as the neg-

ative electrode (anode), and a 0.95M solution of LgMir

18y
=0.12 1
[1819 + 9313« + 18y] @
93.13x
— =016 2
[1819+ 93.13x] @

Powder X-ray diffraction patterns for as-prepared and
post-treated PANI-intercalated ;@5 samples made with
AN:V,05 = 0.5:1 (denoted hereafter as,®s—(AN)0.5)
are presented ifrig. 2 The intercalation of organic poly-

ethylene carbonate/dimethyl carbonate (50:50% (v/v)) as mers into the interlayers of the ®@s xerogel is confirmed

the electrolyte.

3. Results and discussion

Thermogravimetric (TG) and differential scanning calori-

by the shift in (001) reflections to lower angles. For the
as-prepared sample, an interlayer expansion from 12.03 to
13.55A is observed. This expansion is the consequence of
removing one layer of bD (approximately 2.8 A) and in-
serting one monolayer of PANI. The net interlayer expan-
sion can, thus, be calculated to be 4.32 A, which suggests

metric (DSC) curves for an as-prepared sample that was pro-that parallel polymer chains lie between thg®¢ slabg15].

duced by reacting 0.5 mol AN with 1 mol2Ds are shown

Post-treatment at 7@ in air or oxygen does not alter the

in Fig. 1 Four distinct stages are observed in these curves.interlayer spacing (13.55 A for 7@—air and 13.46 A for

The first step, from ambient temperature to about 120

70°C—0y), but a slight contraction takes place with higher

corresponds to the removal of weakly-bound water. The temperature treatment (13.30 A for 130—air and 12.95 A

second step up to 24C correlates with the loss of more
strongly-bound water, which is in good agreement with the
endothermic peak in the DSC curve. After removal of wa-
ter, there is an abrupt weight loss at around 250which

is attributed to decomposition and combustion of interca-
lated organic polymers. This combustion is confirmed by

for 130°C—0y).

The XRD patterns for as-prepared and post-treated
PANI-intercalated ¥Os samples made with AN:AOs =
3:1 (denoted hereafter as,®s—(AN)3.0). An interlayer
expansion from 12.03 to 15.33A is displayed by the
as-prepared sample. Taking into account the 2.8 A of va-

the exothermic peak in the DSC curves. The gain in weight cant space left by water removal, an interlayer expansion
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Fig. 2. Powder X-ray diffraction patterns for as-prepared and post-treat€©g-\YAN)O.5.
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Fig. 3. Powder X-ray diffraction patterns for as-prepared and post-tregt®©g-{AN)3.0.

of 6.1A is estimated. This expansion is slightly larger
than the thickness of the monolayer of PANI (5.3[A5].
Post-treatment gives no significant change in the inter-
layer spacing of YOs—(AN)3.0 samples, i.e. 7@C—air
(15.30A), 70°0C—0;, (15.35A) and 130C—air and Q
(15.12A). The XRD analyses confirm that intercalated
PANI is stable with respect to the applied post-treatment
conditions, as expected from the TG—DSC analy&ig.(3).

The FT-IR spectra of as-prepared and post-treated
samples of WOs5—(AN)0.5 and \WOs—(AN)3.0 are
given in Figs. 4 and 5 respectively. The bands in the
1000-1800cm! range correspond to the typical PANI
pattern[15], which confirms that an emeralidine form of
PANI is formed by the oxidative intercalation reaction.
These peaks are little affected by post-treatment, even at
130°C. This is an indicative of almost no change in the
emeralidine form. The three strong bands below 1000'cm
are the characteristics of vanadium—oxygen stretcfii6g
The vanadyl \#O vibration band at around 1015 crh
in the VL,Os5 xerogel, which is likely to be sensitive to
the out-of-plane chemical environment, shifts down to
1000cnt? upon intercalation of PANI into ¥Os. This red
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Fig. 4. FT-IR spectra for as-prepared and post-treate@s¥(AN)O0.5.
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T shift can be attributed to a bonding interaction between
M/ polyaniline and the inorganic lattice, via N-H O=V [2].
Post-treatment of ¥Os—(AN)0.5 has little influence on

both the PANI peaks and the vanadyl vibration wavenum-
ber. This shows that the chemical interaction between
PANI and V,Os is maintained Fig. 4). For V2Os5—(AN)3.0
samples, the intercalated PANI is little influenced by
post-treatment at least at 70 under both air and oxygen

W/W conditions, as can be seen kig. 5. Increase in tempera-
ture up to 130C deteriorates the PANI structure, which is
w expected to exert an adverse effect on the electrochemical
as-prepared
performance.

The influence of post-treatment conditions on the first and
second discharge—charge characteristics gD3#+(AN)0.5
samples is demonstrated Fig. 6. The discharge capac-
ity is improved after post-treatment at 70, regardless of
the chosen gas atmosphere, and there is good reversibility.
With post-treatment at 13, the first discharge capacities
——— are enhanced but are decreased on the second cycle. The
20001800 1600 1400 1200 1000 800 600 400 V205—(AN)0.5 sample post-treated at 70 in air for 5h

Wave number (cm'1) exhibits the best performance.
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Fig. 5. FT-IR spectra for as-prepared and post-treatg@s¥(AN)3.0.
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Fig. 6. Discharge-charge curves for as-prepared and post-treatedFig. 7. Discharge—charge curves for as-prepared and post-treated
V205—(AN)0.5. Data are collected under a constant current density of Vv,05-(AN)3.0. Data are collected under a constant current density of
0.5mAcnT? in 4-1.5V range. 0.5mAcnT?2 in 4-1.5V range.
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